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Abstract— Reachability analysis has become increasingly im-
portant in robotics to distinguish safe from unsafe states.
Unfortunately, existing reachability and safety analysis methods
often fall short, as they require known system dynamics or large
datasets to estimate accurate system models, are computation-
ally expensive, and assume full state information. A recent tool,
called MORALS, aims to address this by using topological tools
to estimate Regions of Attraction (ROA) for a controller in a
low-dimensional latent space. However, MORALS still relies on
full state knowledge and has not been studied when only sensor
measurements are available. This paper presents Visual Morse
Graph-Aided Discovery of Regions of Attraction in a Learned
Space (V-MORALS). V-MORALS takes in a dataset of image-
based trajectories of a system under a given controller, and
learns a latent space for reachability analysis. Using this learned
latent space, our method is able to generate well-defined Morse
Graphs, from which we can compute ROAs for various systems
and controllers. V-MORALS provides capabilities similar to the
original MORALS architecture without relying on state knowl-
edge, and using only high-level sensor data. Our anonymous
project website is at: https://v-morals.onrender.com.

I. INTRODUCTION

In current reachability analysis methods, it is difficult to
understand the dynamical behavior of a system and controller
when the system is high-dimensional or the controller is
complex [1], [2]. To analyze such dynamical behavior, we
build upon an architecture from [3] called Morse Graph-
aided discovery of Regions of Attraction in a learned Latent
Space (MORALS), to generate a Morse Graph from which
we can compute a Region of Attraction (ROA) map [1], [4]
in a learned latent space. Morse Graphs [5], [6] provide
a powerful way to understand the long-term behavior of
complex systems by building a discrete graph of a system’s
dynamics, which allows us to analyze safety and predict
outcomes with mathematical certainty. The derived ROA
map is vital to determining the safety of a system because
it explains if a robot’s trajectories will converge to an
equilibrium point (i.e., a safe or failure state of the robot).

Applying a Morse graph directly to high-dimensional
systems can be computationally expensive, which is why the
MORALS architecture uses a low-dimensional latent space
to build the Morse Graph and ROA map. MORALS defines
a learned latent space by encoding state information to a
lower dimension and understanding the transitions between
latent vectors with a latent dynamics network. By generating
the Morse Graph and ROA map within this simplified space,
MORALS provides an efficient way to analyze the safety of
high-dimensional systems and complex controllers.

However, extending this architecture to operate on visual
data introduces significant challenges. State representations
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Fig. 1: Region of Attraction (ROA) map of the GetUp controller [10] on a
Humanoid. Given a trajectory of images, we learn a latent space to generate
a Morse Graph and ROA map. Here, E(-) refers to the encoded latent vector
of an image stack. Each colored region of the ROA map corresponds to a
different attractor, allowing the system to predict the long-term outcome of
a trajectory, such as success /1 — F'1 or failure /12 — F2, and providing
safety analysis without access to the system’s state information.

provide a complete and concise description of a system’s
configuration, including explicit dynamic variables like joint
velocities. In contrast, a single image lacks this motion data,
resulting in partial observability and ambiguity, as multiple
future states could plausibly follow a single visual frame.
Additionally, images are much higher in dimensionality
than state-based information. For example, in CartPole, a
standard control task in DeepMind Control Suite [7], the
state has 4 dimensions, while a corresponding image could
be orders of magnitude larger in dimension. When encoding
images, latent vectors are unable to store the same level of
information as a state-based approach. This also complicates
learning dynamics within a latent space [8], as the transition
between two latent vectors is only physically meaningful
if the corresponding sequence of reconstructed images [9]
represents a valid progression in the original environment.
In this paper, we present V-MORALS as a nontrivial
extension of MORALS to deal with partial observability.
V-MORALS learns system dynamics from visual data (see
Figure 1 for an example). To do so, we preprocess each
image to generate a binary mask, which isolates the system
from the background to reduce input complexity. To embed
temporal information, we encode a stack of sequential frames
into a single latent vector. This conditions the representation
on an initial trajectory and thus constrains the possible future
states. We implement this spatiotemporal encoding using a
3D convolutional autoencoder [11]. The encoder compresses
the image stack, capturing its visual content and temporal
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evolution, while the decoder reconstructs it. Both compo-
nents are trained jointly with a latent dynamics network.
Using these networks, V-MORALS effectively captures the
underlying dynamics of a controller applied to a system, in
a learned latent space.

The contributions of this paper include:

1) V-MORALS extends MORALS by generating Morse
Graphs and ROA maps in a latent space with only par-
tial observability. Our approach is able to address the
issues of using high-dimensional images and capturing
initial dynamics to define a learned latent space.

2) We provide extensive empirical validation of our ap-
proach on three standard control benchmarks (Pen-
dulum, CartPole, and Humanoid). Our experiments
demonstrate that the model successfully learns the
underlying system dynamics and generates accurate
Morse Graphs and Regions of Attraction across various
controllers and latent space dimensionalities.

II. RELATED WORK
A. Reachability and Safety Analysis

Classical reachability analysis provides formal guarantees
about whether trajectories of a dynamical system remain
within safe sets or converge to desired equilibria. Tools such
as Hamilton-Jacobi reachability have been widely applied
in robotics and control to compute forward and backward
reachable sets, but can scale poorly due to the exponential
dependence on system dimensionality [1], [2], [12]-[14].
Recent work has extended Hamilton—Jacobi reachability to
hybrid dynamical systems for walking robots [15] and to
adaptive shielding for safe reinforcement learning in real-
world robots [16], but these approaches have only been tested
on low-dimensional state spaces. Related efforts also explore
learning Regions of Attraction for nonlinear systems directly
from data [17] with the help of Lyapunov functions [18],
[19], but typically to estimate a single attractor.

Complementary approaches based on Control Barrier
Functions (CBFs) provide a more tractable alternative, en-
abling real-time safety filtering of control policies [20].
Recent advances extend these tools by learning CBFs directly
from expert demonstrations [21] and by developing model-
free formulations that scale to high-dimensional systems
without requiring explicit dynamics models [22]. Neverthe-
less, these methods still assume access to low-dimensional
state representations. In contrast, we explore safety analysis
in scenarios where explicit system dynamics and full state
information are unavailable, requiring us to rely on images.

B. Latent Space Representations for Planning and Control

Learning compact latent representations has become a
common strategy for enabling robots to reason from high-
dimensional sensory inputs such as images. Rather than
operating directly in pixel space, these methods train deep
generative or predictive models to capture structure in a
lower-dimensional latent space, where dynamics are easier
to model and manipulate. This abstraction has improved
planning, control, and reinforcement learning [9], [23]-[25].

In robotics, latent representations have been leveraged
to support a variety of planning frameworks. For example,
latent spaces have guided motion planning [26] and enabled
graph-based search for long-horizon planning [8], [27]-[29].
More recent work has applied latent relational dynamics
to multi-object manipulation and rearrangement [30]. While
these approaches demonstrate the benefit of latent spaces for
improving planning and control efficiency, they generally do
not analyze system safety. In contrast, our work leverages la-
tent representations as the foundation for estimating Regions
of Attraction for safety analysis.

C. Safety and Reachability in Latent Spaces

A growing body of work explores combining safety anal-
ysis with latent representations. For example, [31] propose
methods for designing controllers directly in latent spaces
with provable stability and safety guarantees, enabling formal
reasoning without operating in the full high-dimensional ob-
servation space. Recent work has also extended reachability
analysis to latent spaces to generalize safety beyond collision
avoidance, demonstrating that latent models can capture
broader classes of constraints relevant for robotics [32].

The most closely-related work to ours is MORALS [3],
which combines latent dynamics with Morse Graph anal-
ysis to identify attractors and their corresponding ROAs.
MORALS provides a powerful framework for checking
safety and long-term outcomes, but it assumes access to state
information and has not been studied in settings where only
raw sensory data is available. In contrast, our work extends
MORALS to operate under partial observability using image-
based inputs, and thus performs safety analysis into domains
where only high-dimensional observations are accessible.

III. PROBLEM STATEMENT AND PRELIMINARIES
A. Dynamics and Observation Function

We consider a discrete-time dynamical system with an
n-dimensional state space & € R”, governed by a known
policy. The system’s state s; € § at time ¢ evolves according
to the unknown dynamics f such that the next state is
st+1 = f(s¢,ur), where u, is a control input from a given
state or image-based controller and with sy € Sjuiriar being
the initial state. While the true state s; is inaccessible, we
can observe the system through an observation function,
¢ : 8 — RI>*WXC in image space, where H, W, and C indicate
the height, width, and number of channels, respectively. The
image observation at time 7 is thus given by I, = ¢ (s;).

B. Reachable Sets

Our objective is to compute reachable sets having only
access to images, and determine if the set of initial images
Fimitial = O (Siniriar) Will result in desirable or undesirable be-
havior. We compute reachable sets to see how Iy € Fjyjriqr Will
converge to an attractor and determine whether it is desirable
or undesirable. Conceptually, we consider the image space
dynamics I = g(I;) where g encodes ¢(f(s;)). We also
define r as the number of recursive rollout steps of g applied
to I; such that I, , = g"(I;). This also means that I, = g%(I,).
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Fig. 2: The V-MORALS architecture and training pipeline. From our dataset &; we randomly sample sequence of input images to form each sample,
Ii-k+n- This is mapped to a low-dimensional latent vector z; by an Encoder (E). A latent dynamics network (LD) is trained to predict the future latent state
Zk+ar- A Decoder (D) reconstructs the image sequence I, ; ., from the latent state z;. See Section IV for more details.

Given the set of initial observations Finitia1, the reachable
set, denoted Z(Finitial), is the set of all observations that
can be reached from any initial observation in iy, over
any number of future time steps. Formally, it is the union of
all forward images of the initial set under the dynamics g:

)= UJ{g" (o) | To € Finisia}-
r=0

R(Finitial

By computing this set, we can partition the observation space
into regions corresponding to distinct long-term behaviors,
and identify which initial conditions lead to desirable or
undesirable outcomes. We remark that there is a subtle
challenge here due to the use of observations. When we
observe states directly, i.e., when the observation map ¢ is
the identity function, formally defining desirable behaviors
is trivial, i.e., reaching a goal region or avoiding obstacles.
However, defining desirable behavior in image space is not
immediate, highlighting a distinct challenge of our work.

C. Latent Space and Attractors

To analyze the long-term behavior of high-dimensional
systems, the MORALS framework [3] leverages tools from
combinatorial topology. MORALS creates a finite, discrete
representation of a system’s dynamics, which allows for the
identification of attractors and their corresponding regions
of attraction. To provide context for our contributions and
establish the necessary background, we outline two key
components from MORALS that are central to our image-
based adaptation: the use of a learned latent space to man-
age dimensionality, and the application of Morse Graphs
to analyze system dynamics. We can adapt the MORALS
framework to our objective by asserting the observation
function, ¢, is the identity.

Even when state measurements are available, a primary
challenge in analyzing robotic systems is in the high dimen-
sionality of their state space. MORALS addresses this by
learning a low-dimensional latent space, Z, that captures
the essential dynamics of the system. This is achieved using

an encoder defined as: £ : & — Z, that maps the high-
dimensional state s € § to a low-dimensional latent vector
z€ Z, and a decoder D : & — & that reconstructs the
original state from the latent vector. By training the encoder
and decoder on system trajectories, the framework obtains a
compressed representation where the complex dynamics can
be analyzed more efficiently.

Once the dynamics are projected into the latent space,
MORALS employs tools from combinatorial topology to
analyze the behavior of the dynamical system. The central
tool for this is the Morse Graph [5], a directed acyclic graph
that provides a finite, combinatorial representation of the
system’s dynamics. The Morse Graph’s nodes correspond to
the system’s recurrent sets, and its edges describe the flow
between them. The leaf nodes of this graph represent the
system’s attractors, which are stable states or limit cycles
to which trajectories converge. By identifying attractors, one
can then compute their Region of Attraction (ROA), which is
the set of all initial states that are guaranteed to converge to a
specific attractor. This technique allows MORALS to predict
the final outcome (e.g., success or failure) of a trajectory
from its initial state, a capability that our work aims to extend
to systems observed only through images.

D. Problem Formulation

For a given task, we assume that we are given a dataset
of N trajectory rollouts & = {T,} A where each 7; consists
of a sequence of states: 7; = {so), sk } We assume that
these trajectories are obtained from the system under a
given controller. We do not need to know the system or
the controller, as long as we can collect trajectories. Each
image I,“ is generated from its corresponding state s,() via
the observation function: ¢(s,( >) = ,( ) We also define:

I = {10(’),...,1,5’)},
as the set of images in trajectory 7;. We denote our image

dataset as @7 = {7} |. To ease notation, we suppress the
superscript and use T when the distinction is not needed.



Lastly, we define y; as a label describing the trajectory
outcome (success or failure) of 7;.

We demonstrate how we can use this image dataset 2
to analyze the system’s dynamical behavior. Our method
trains a model to achieve a dual objective: to predict the
eventual outcome of a given trajectory (success or failure),
and to generate a high-level, combinatorial map of the state
transitions within a learned latent space. See Figure 2 for an
overview of the pipeline.

IV. PROPOSED METHOD
A. Image-Based Data Generation

For each image in our dataset &y, we apply a binary
mask to isolate the system from the background. This is
a crucial preprocessing step because the dynamics of our
chosen tasks are governed entirely by the system’s physical
configuration (i.e., the positions and angles of its parts). The
mask removes dynamically irrelevant information, such as
texture and lighting, enabling the model to learn a more
robust and accurate representation of the system’s state.

A key challenge, not present in MORALS [3], is capturing
the system’s initial dynamics using only image frames. A
single image frame may correspond to multiple possible
futures, making prediction ambiguous. To capture temporal
dynamics, we encode short image sequences, or stacks, into
latent vectors. From each image trajectory % € 9y, we
construct a dataset of ordered pairs for training.

Each pair consists of two consecutive image stacks sepa-
rated by a time interval. Let the stack size (history length) be
denoted by &, and the time interval between stack pairs be
At. A single training pair is then formed by a stack starting
at time k and the subsequent stack starting at time k + Ar:

@ 40
Bk T vk an i)

where an image stack [i.x., is defined as the sequence of &
images:

=) 1
Each trajectory .#; is assigned a binary outcome label,
yi € {0,1}, corresponding to its final behavior. We define
yi =1 for the trajectories that result in successful completion
of the task (a desired outcome) and y; = 0 for those that result
in failure (an undesired outcome). The ordered pair with its

label is denoted as: (llgi)<+h»11£izAz:k+At+h’yi)'

Dckern = dinr}-

B. Model Architecture

We define a d-dimensional latent space Z C [—1,1]¢ using
three different networks: the encoder, decoder, and the latent
dynamics network. Our encoder and decoder allow us to have
meaningful latent representations while our latent dynamics
network learns to understand transitions between states in
Z . For more details, we refer the reader to MORALS [3].

Our encoder, E, is a 3-dimensional convolutional au-
toencoder [33], designed to process sequences of images.
It maps an image stack 7, ,)( 4 to a low-dimensional latent

vector z; € Z, or more formally: E(I, ,E:,)(Jrh) = z,((). Using 3D

convolutions is crucial because they operate across spatial

(height, width) and temporal (the stack dimension) axes. This
allows the network to directly learn spatiotemporal features,
such as motion and velocity, from the raw pixel data.

To enforce the boundaries of the latent space, the final
layer of the encoder utilizes a tanh activation function, en-
suring all components of the latent vector z,(;) are mapped to
the range [—1, 1]. The encoder is trained to distill the position
of the system and the essential dynamical information from
the image sequence into this compact vector.

Our decoder, D, is the inverse of E. It maps a latent
vector zx € Z from the low-dimensional latent space back
to the high-dimensional observation space, reconstructing the
original image stack. Architecturally, the decoder mirrors the
encoder and uses 3D transposed convolutions. These layers
are used for upscaling the compact latent vector back into
a full-resolution image stack. This function is defined as:
D(z,({l)) I,E ,1 p» Where I,E ,>c ., is the reconstructed image stack.
Since the initial pixel range is [0,255] where 0 is black
and 255 is white, we use a sigmoid activation function in
the final layer of the decoder. This allows us to produce a
binary output which maps each pixel to values {0, 1} where
0 is still black and 1 is now white. The decoder attempts
to reconstruct the original input ( p k o~ k i +h) which
encourages the latent vector z; to retain salient information.

Lastly, we define our latent dynamics network, LD, as a
feedforward neural network. This network operates entirely
in Z and is trained to predict the next latent state based on
the current one. This function is defined as:

() =) o, (1)
where z,((l) is the current latent state and z,((l}r A 18 the predicted
latent state at the next time step. To ensure the predicted
vector remains within the bounds of the latent space, this
network also employs a tanh activation function on its final
layer. This allows us to simulate and predict the system’s
behavior within the latent space.

C. Training Objectives

To jointly train the model, our total loss function is
composed of four com onents which are calculated for each
training pair: (Ik k+h7Ik+At kv Vi)

The first component is the autoencoder reconstruction loss,
Lyecon- This loss ensures the encoder-decoder can faithfully
compress and reconstruct an image stack. The loss is defined
as:

Lrecon = BCE(IIEfI)chh’D(E (Ilill)chh))) 2

We use the Binary Cross-Entropy (BCE) loss to measure
error on our binary images. To compare our original images
to the reconstructed images, we divide the original image’s
pixel values by 255 to make it within O (black) and 1 (white).

Second, we compute the latent dynamics 10ss Lgynamics-
This loss ensures that the difference between our output of
the latent dynamics network and our encoded stack zk'J)r A 1S
minimized. This loss is formally defined as:

Laynamics = MSE(E (" ),LD(E(I(), ). ()

k+At k-+At+h/>



We use the Mean-Squared Error (MSE) loss function to
minimize the Euclidean distance between the two latent
vectors in Z.

Third, we compute the reconstruction 10ss Lyecon pred Where
we reduce the loss between the second stack in the pair,
I,E’l Arktar, and the reconstruction of our latent prediction:

D(LD(E(I{),,))- @)

Similar to Equation 2, we use BCE to minimize the loss
between the two stacks of binary images.

Lastly, we define a contrastive 10SS, Lousrast> that structures
the latent space by training the model to group latent vectors
with the same y;. This loss operates on a group of latent
vectors from the positive class (Z)0;) and negative class
(Zheg) and is composed of two main objectives:

Lrecon pred — BCE (Ilgl-t,)-Az:k-q-At—}—h’

1) Inter-Class Loss: This component pushes the two clus-
ters apart. It penalizes any pair of positive and negative
latent vectors that are closer to each other than a
defined margin, m.

2) Intra-Class Loss: This component makes each cluster
tighter. It penalizes the pairwise distances between
all vectors within the positive cluster and, separately,
within the negative cluster.

This loss can be defined as:

Lcommst = Z

2pE€Zpos,in€Zneg

max(0,m — ||z *Zn“%)

2
Zp; yij EZpox
+ Y el

Zn; .,an EZneg

The first term represents the inter-class loss, while the
remaining two terms correspond to the intra-class loss for
their respective classes. Using these four components we can
define our total loss function as follows:

Liotar = A1 Lyecon + AZLdynamics + AGLrecon pred + )L4Lcontrast7
(6)
where A; through A4 are weights chosen to ensure high-
fidelity reconstructions from the latent space, while also
learning an accurate model of the system’s dynamics in Z.
We trained the models (see Section V-B) for each sys-
tem for 5000 epochs using the Adam optimizer [34] with
a learning rate of 1 x 107* on a single NVIDIA V100
GPU. The dataset was partitioned into 80% for training and
20% for validation. Our method is not variational [35] as
we found that it was not necessary to achieve promising
results. The stochastic nature of a variational autoencoder
introduces nontrivial challenges for our analysis. Each input
would map to a distribution of latent states, increasing the
number of potential transitions between cells. This results in
a Morse graph with significantly more nodes and complexity,
undermining its utility for a high-level, interpretable analysis.

D. Morse Graph and Region of Attraction (ROA) Generation

Using our learned latent space Z, we can construct a
Morse Graph MG, which provides a discrete representation
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Fig. 3: The process for constructing the directed graph F, which serves as a
combinatorial map of the system’s dynamics within the learned latent space
Z . Image stacks are first mapped into the latent space by the encoder E.
This space is then discretized into a grid of cells C. To determine the flow
between cells, the corner points of a given cell (¢;) are propagated through
the learned dynamics network LD. A safety bubble with radius & is created
around each predicted point to account for prediction uncertainty. A directed
edge is drawn from c; to another cell c; in the graph F(C) if the union of
these safety bubbles intersects with c;. This process is repeated for all valid
cells to build a complete map of the latent dynamics.

of the system’s global behavior, and its corresponding ROA
map (see Section III-C). We begin by sampling image stacks
from the trajectory dataset, and encoding each in Z using
the trained encoder, E. We then discretize this latent space,
which is bounded by [—1,1]¢, into a grid of hypercubes,
or “cells.” To ground our analysis in physically meaningful
states, we focus only on the cells that contain these encoded
data points and their immediate neighbors. We denote this
collection of valid cells as C. See Figure 3 for a visualization.

To build MG, we determine the transitions between cells
in C using our trained latent dynamics model LD. This is
achieved by creating a directed graph, F, where each cell is
a node. An edge is drawn from a cell ¢; to another cell ¢; if
LD can cause a transition from a state in ¢; to a state in c;.
However, since it is computationally infeasible to calculate
the future state for every point within a cell, we take the
corner points for a given cell ¢; € C and denote the set of
these points as V. For a corner point v; € V, we apply our
latent dynamics network to give LD(v;) — V; for a certain
number of rollout steps. To account for the uncertainty in this
prediction and to ensure that we capture all possible future
states for any point within a cell ¢;, we create a J-closed
ball around v; and each predicted corner point. The radius of
this “safety bubble” is determined by the Lipschitz constant
L of the dynamics, which provides a mathematical guarantee
on the maximum possible divergence of trajectories. A
transition from cell ¢; to cell ¢; is considered possible if
the union of these safety bubbles of each predicted corner
point intersects with ¢;. This process is repeated for all valid
cells, resulting in the directed graph F, which serves as a
reliable, combinatorial map of the system’s dynamics.

With the directed graph F' constructed, we now simplify
this detailed map of cell-to-cell transitions into the more
abstract and interpretable Morse Graph, MG(F). This is
a crucial step that distills the complex, cyclical dynamics
within F into their essential, long-term behaviors.



Fig. 4: Morse Graph and ROA map for the Get Up controller applied
to a Humanoid, with a latent space dimension of 3. The colors for each
Morse Node describe how the set of states changes between each node.
The dark blue node represents the attractor of the success region while the
dark purple node represents the attractor of the failure. V-MORALS can
successfully analyze a complex, high-degree-of-freedom system using only
high-dimensional image data, providing an interpretable, low-dimensional
map to predict bistable tasks. Additionally, V-MORALS further extends
MORALS by being able to visualize ROAs in a 3 dimensional space.

The construction of MG(F) begins by decomposing the
graph F into its Strongly Connected Components (SCCs).
An SCC is a subgraph where every node, representing a cell
in the latent space, is reachable from every other node within
that same subgraph. These SCCs represent the recurrent sets
of the dynamics, which are regions where the system can
cycle indefinitely. Each identified SCC is then collapsed into
a single node in a new graph. This new node is called a
Morse set. A directed edge is drawn from one Morse set to
another if there exists at least one edge in the original graph
F from a cell in the first SCC to a cell in the second. The
resulting graph is the Morse Graph, MG(F'). Since all cycles
are contained within each node, the connections between
nodes are inherently acyclic. By construction, MG(F) is a
directed acyclic graph, which provides a clear, hierarchical
representation of state transitions within Z.

We then use our Morse Graph to derive the ROA for any
given attractor, which corresponds to a leaf node in the graph
(see Figure 4). The ROA of an attractor is then defined as
the set of cells in C that have a path in F leading to any of
the cells within the SCC corresponding to that attractor. By
mapping these ROAs, we can partition the state space into
distinct basins, providing a formal guarantee on the long-
term outcome for any initial state within those regions.

V. EXPERIMENTS

A. Simulation Tasks

We evaluate our method through three tasks: Pendulum,
CartPole, and Humanoid, each with a distinct stabilization
goal. The Pendulum’s objective is to swing up and balance,
the CartPole must balance its pole while moving to the cen-
ter, and the Humanoid must maintain a standing posture. We
select these tasks due to the inherent bistable characteristics
of the systems. Predicted trajectory rollouts can therefore be
easily classified as either success or failure.

Environment Latent Dim  Precision Recall F-score
o501 o O o
Rt
P 1 e o o

TABLE I: Performance of V-MORALS in classifying trajectory outcomes
across different environments and latent space dimensionalities. For all three
metrics (Precision, Recall, and F-score), higher is better.

To get image data, we use the existing MORALS
dataset [3] and render state trajectories in MuJoCo [36].
The Humanoid images are rendered using a public repos-
itory [10]. For Pendulum and CartPole, we use an LQR con-
troller [37]. For Humanoid, we use a trained Soft Actor-Critic
(SAC) [38] policy. Each trajectory in Humanoid, CartPole,
and Pendulum has 200, 1000, and 20 frames respectively.

B. Experiment Protocol

We evaluate the effect of latent space dimensionality in
three stages. First, we train two distinct models per system,
with latent dimensions of 2 and 3. We define a single
trajectory instance as a tuple (Io.; lien(1)—h:ten(r)>Y)> CONSisting
of the initial image stack, the final image stack, and the
outcome label (y =1 for success, y = 0 for failure). Using
these tuples, we create four sets. Let By = {E(Ip.;,) |y =1}
be the set of initial latent vectors, obtained by encoding the
first & frames of every successful trajectory. We also define
By ={E(lp.;) |y =0} to be the set of initial latents in each
unsuccessful trajectory. Let Ly = {E(Lien(ry—p:ten(r)) |y = 1}
be the set of successful final latent vectors, obtained by
encoding the last & frames of successful trajectories only.
Similarly we define Ly = {E (lien(1)—p:ten(r)) | ¥ = 0}

Second, we generate a Morse Graph and a corresponding
Region of Attraction (ROA) map of each system, under both
latent dimensions, by simulating the learned dynamics for
r rollout steps. The attractor basins in the graph are then
labeled: the attractor containing the latent vectors from Lg
is designated the “success region,” while all other attractors
are designated as “failure regions” (see Figure 5).

Finally, we calculate accuracy by classifying the initial
states. A prediction for an initial state is correct if its latent
vector in By maps to the success region or if its latent vector
in By maps to a failure region. The total accuracy of our
model is the fraction of its correctly classified initial states.

C. Results

The performance of our V-MORALS framework in clas-
sifying trajectory outcomes is detailed in Table I. The results
demonstrate a direct relationship between the dimensionality
of & and the model’s predictive accuracy across all three
test environments. For each dataset provided by MORALS,
80% was used for training and 20% was used for testing. For
the Humanoid system, we built the Morse Graph on latent
vectors from the training set. For the Pendulum and CartPole



Benchmark Model Precision  Recall F-Score
Pendulun (LQR)  V\IORATS Ou) 04118 04750 0.3600
CartPole (LQR) \l\;l-g/lRo?z];\SLs (Ours) 8:28(1)3 8:3338 8:2&2(7)
Humanoid SAO VVIORALS Ou) 09091 03846 0.5408

TABLE II: Comparison of V-MORALS against the original state-based
MORALS framework [3] where both use a latent dimension of two. For
Precision, Recall, and F-score metrics, higher is better.

Model Latent Dim  Precision Recall F-Score
2 09100 09100  0.9100
MORALS (State-based) 3 0.8900  1.0000  0.9400
2 09091 03846  0.5405
V-MORALS (Ours) 3 1.0000 07253  0.8408

TABLE III: Performance comparison on the Humanoid (GetUp) bench-
mark [10] between the state-based MORALS and our image-based V-
MORALS across latent dimensions.

environments, where the datasets were sparse, we sampled
points from Z to build each Morse Graph.

A primary finding is the universal performance improve-
ment when increasing the latent dimension from 2 to 3. In
the CartPole environment, the F-score increased substantially
from 0.2947 to 0.8101. We also observe a similar gain in
Humanoid, from 0.5405 to 0.8408. This trend suggests that a
2-dimensional latent space is insufficient to capture the com-
plexity of the system dynamics required for accurate outcome
prediction, whereas a 3-dimensional space provides a signifi-
cantly richer and more effective representation. Qualitatively,
we find that the Morse Graph is simpler (with fewer nodes),
and encompasses the bistable nature of the task (see Fig-
ure 6), when increasing the latent dimension. The magnitude
of this improvement also correlates with trajectory length.
V-MORALS significantly improved in predicting outcomes
of initial states for CartPole, which has 1000 frames per
trajectories, after increasing the dimensionality. In contrast,
V-MORALS saw a much smaller gain with the Pendulum
environment, which only has 20 frames per trajectory. This
indicates that longer trajectories better leverage the increase
in latent dimensions.

To contextualize the performance of our image-based
method, Table II provides a direct comparison between
V-MORALS (using a 2D latent space) and the original
MORALS framework which operates on true state informa-
tion. The performance at a latent dimension of 2 establishes a
clear baseline, demonstrating that while the task is inherently
more difficult, our approach is viable. This motivates our
results in Table III, which show that this performance gap
can be closed by increasing the latent space dimensionality
to better capture the system’s complex dynamics. For better
visualizations of ROA maps, we refer the reader to our
website: https://v-morals.onrender.com.

Fig. 5: Analysis of the CartPole system’s dynamics in a 3-dimensional
learned latent space. (Left) The generated Morse Graph identifies three leaf
nodes. The images below show the corresponding physical outcomes: the
desired balanced state (green node) and two distinct failure modes (light
purple, pole falling left; dark purple, pole straight down). (Right) The ROA
map partitions the latent space, where each colored region represents the
set of initial states guaranteed to converge to its respective attractor.
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Fig. 6: A comparison of Morse Graphs generated for Pendulum using
different latent space dimensions. (Left) A 2-dimensional latent space yields
a complex graph with multiple attractors (leaf nodes), failing to capture the
true bistable nature of the task. (Right) Increasing the latent dimension to
3 results in a simpler and more accurate topological representation. The

dynamics correctly converge to two distinct attractors (dark purple and
green), which correspond to the task’s success and failure states.

VI. LIMITATIONS

While a promising approach, V-MORALS has some lim-
itations that motivate opportunities for future work. First,
our method relies on images being a relatively complete
representation of what the robot is doing, and may struggle if
images contain significant partial observability. Second, our
method, as with the original MORALS, assumes that there
are fixed regions of attraction, which might not exhaustively
characterize all robotics tasks. Finally, we only test on a
set of simulated tasks, and in future work we plan to test
this using images from real-world robotics tasks, as well as
to explore different types of manipulators to understand the
cross-embodiment transfer [39] of latent space analysis.

VII. CONCLUSION

This paper presents Visual Morse Graph-Aided discovery
of Regions of Attraction in a learned Latent Space (V-
MORALS). V-MORALS provides capabilities similar to


https://v-morals.onrender.com

the original MORALS architecture without relying on state
knowledge, or the controller used for the system. Our method
is able to generate well-defined Morse Graphs and ROAs
from different controllers for the Pendulum, CartPole, and
Humanoid environments. We hope that this work inspires
future research in the analysis of reachability and safety of
controllers for complex, high-dimensional scenarios.
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